US009052924B2

a2z United States Patent (10) Patent No.: US 9,052,924 B2
Whitechapel et al. 45) Date of Patent: Jun. 9, 2015
(54) LIGHT-WEIGHT MANAGED COMPOSITE 2003/0090519 Al 5/2003 Subramanian et al.
2004/0194020 Al 9/2004 Beda et al.
CONTROL HOSTING 2005/0091576 Al 4/2005 Relyea et al.
2005/0091672 Al 4/2005 Debi t al.
(75) Inventors: David Andrew Whitechapel, Seattle, 2005/0140694 Al 6/2005 Slfbrlmi; et al.
WA (US); Daniel A. Molina, Redmond, 2005/0262517 Al 11/2005 French
WA (US) 2006/0101412 Al* 52006 Levetal.ccooeonenee 717/127
OTHER PUBLICATIONS
(73) Assignee: Microsoft Technology Licensing, LL.C,
Redmond, WA (US) Ken Arnold et al., The Java Programming Language, 2006, Adison
Wesley, Fourth Edditon, p. 141, 142.*
(*) Notice: Subject to any disclaimer, the term of this Whitechapel, “Build Office-Based Solutions Using WPF, WCF, and
patent is extended or adjusted under 35 LINQ”, http://msdn.microsoft.com/msdnmag/issues/07/12/
U.S.C. 154(b) by 1445 days. VstoNet/default.aspx.
Heege, “Integrate Windows Forms into Your MFC Applications
. through C++ Interop”, http://msdn.microsoft.com/msdnmag/issues/
(21) Appl. No.: 12/102,869 06/05/mixandmatch/default.aspx.
a1 “Infragistics NetAdvantage for Net + WPF—Summary”, http://
(22) Filed: Apr. 15, 2008 www.componentsource.com/products/infragistics-netadvantage-
. . net-wpf/summary.html.
(65) Prior Publication Data Nayyeri, “Host Windows Forms Controls in WPF”, http://nayyeri.
US 2009/0259951 A1l Oct. 15. 2009 net/archive/2007/02/20/host-windows-forms-controls-in-wpf.aspx.
(51) Int.CL * cited by examiner
GO6F 3/00 2006.01 . .
GO6F 9/44 E2006 013 Primary Examiner — Craig Dorais
GO6F 9/46 (200601) (74) Allorney, Agenl, or Firm — Jim Banowsky; Leonard
GOG6F 13/00 (2006.01) Smith; Micky Minhas
GO6F 9/455 (2006.01)
(52) US.CL (57) ABSTRACT
CPC e GO6F 9/4443 (2013.01) A managed composite control can be directly (without inter-
(58) Field of Classification Search mediary hosting layers) hosted within an unmanaged hosting
None application. A managed control which can host managed
See application file for complete search history. composite controls is provided, the managed control being
directly hostable within any unmanaged hosting control. An
(56) References Cited adapter (control) wraps the managed control content before

U.S. PATENT DOCUMENTS

5,729,537 A * 3/1998 Billstromcoonn. 370/329
6,229,537 Bl 5/2001 Sobeski et al.
6,718,534 Bl 4/2004 Carter et al.
6,996,809 B2* 2/2006 Muhlestein et al. 717/130
7,047,501 B2 5/2006 Morcos et al.

the control content is moved into the unmanaged layer. Over-
loaded methods are provided that accept managed controls
and manage communication between layers in such a way
that instead of internal references expecting a user control, the
internal references expect an object.

20 Claims, 5 Drawing Sheets

Native application hosts
native control 205

Native Control hosts
managed composite
adapter 210

adapter hosts managed
composite control 212

U.S. Patent Jun. 9, 2015 Sheet 1 of 5 US 9,052,924 B2

LAYER 1 UNMANAGED APPL (E.G. OFFICE APPLICATION
WINDOW) 10

LAYER 2 UNMANAGED CONTROL (E.G. ACTIVEX
CONTROL)_20

LAYER 3 MANAGED CONTROL (E.G.
WINDOWS FORM CONTROL) 30

LAYER 4 HOSTING CONTROL (E.G.
ELEMENT HOST CLASS) 40

LAYER 5 MANAGED CONTROL (E.G. WPF
CONTROL) 50

PRIOR ART

FIG. 1a

LAYER 1 UNMANAGED APPL (E.G. OFFICE APPLICATION
WINDOW) 10

LAYER 2 MANAGED APPL (E.G. VSTO) 21

LAYER 3 LIGHT WEIGHT HOSTING
CONTROL 31

LAYER 4 MANAGED CONTROL (E.G. WPF
CONTROL) 41

FIG. 1b

U.S. Patent Jun. 9, 2015 Sheet 2 of 5 US 9,052,924 B2

Winword.exe 13

VSTO add-in 22

Custom task pane (native window) 32
Windows Forms Custom UserControl 42

Windows Forms Integration ElementHost 51
WPF custom UserControl 52

WPF control panel 53

PRIOR ART

FIG. 1c

Unmanaged Appl Executable (e.g., Winword.exe) 14
Managed Add-in (e.g. VSTO) 23

Native window (Custom task pane) 33

Light-Weight Hosting Control 43

Managed Composite Control (e.g.,
WPF control) 55

FIG. 1d

U.S. Patent Jun. 9, 2015

Sheet 3 of 5

Native (Office) window
hosts native (VSTO)
ActiveX Control 202

!

Native application hosts
native control 205

Native (VSTO) ActiveX
Control hosts any
Windows Forms control
204

|

|

Native Control hosts
managed composite
adapter 210

Windows Forms control
hosts instance of .NET
ElementHost Forms
control 206

|

|

adapter hosts managed
composite control 212

.NET ElementHost Forms
control hosts WPF
control 208

PRIOR ART

FIG. 2a

FIG. 2b

US 9,052,924 B2

U.S. Patent Jun. 9, 2015 Sheet 4 of 5 US 9,052,924 B2

Operating system 528

Applications 530

Connection(s) [14— Interface 548
550 —

A

R

r=-—-——-—-= _: vJ
: | |Modules 532
I I
| I Data 534
[I
I I
I 1
I
I Processing |
I Unit 514 Output N Output
I Adapter(s) 542 [— Device(s) 540
I
I
System Interface i
—_— «!—»| Input Device(s
|~ 1] Memory 516 Ports(s) 538 €[pey o)
| Volatile 520 || |
: Non Volatile
| 522
: <« System Bus 518
I
[Interface 526 |— L
| Communication Network
I
I
I
I

Disk Storage
524

r
I
I

Memory

Storage
246

Computer 512

Remote
Computer(s)
544

M4
510 FIG. 3

U.S. Patent Jun. 9, 2015 Sheet 5 of 5 US 9,052,924 B2

USER
INTERFACE
640
NATIVE
CODE 611 [¢ SOURCE
CODE EDITOR
651
IL |
Co“gz(')'-ER SOURCE
660 CODE
T~ COMPONENT
7 ~—_ 610
weTapata| | NTERMEDIATE
LANGUAGE
642 COMPONENT 650 SOURCE
630 COMPILER
A 620
COMMON LANGUAGE RUNTIME IDE 600
ENVIRONMENT 602

FIG. 4

US 9,052,924 B2

1
LIGHT-WEIGHT MANAGED COMPOSITE
CONTROL HOSTING

BACKGROUND

A graphical user interface or GUI is a type of user interface
that allows a user to interact with a computer and computer-
controlled devices. A GUI presents graphical icons, visual
indicators or graphical elements, sometimes in conjunction
with text, labels or text navigation, to represent information
and actions available to the user. Instead of offering only text
menus, or requiring typed commands, an action is usually
performed through direct manipulation of graphical interface
elements.

A control is an interface element with which the user inter-
acts, such as a window or a text box. A control provides a
single interaction point for the direct manipulation of a par-
ticular kind of data. Controls are visual basic building blocks
which, when combined in an application, hold the data pro-
cessed by the application and control the available interac-
tions on the data.

Families of common reusable controls for holding general
information are available. Different implementations of these
generic controls are often packaged together in toolkits, used
to build GUIs. A number of different technologies and runt-
ime libraries are available to support GUIs. Often several
technologies are combined to present a desired GUI solution.
Combining technologies is difficult, typically involving a
number of layers and is apt to introduce fragility in the result-
ing solution.

SUMMARY

A managed composite control can be directly hosted
within an unmanaged hosting application, without interme-
diary hosting layers. A managed hosting control which can
host managed composite controls is provided, the managed
hosting control being directly hostable within any unman-
aged hosting control. Overloaded methods may be provided
that accept managed composite controls and manage commu-
nication between layers in such a way that instead of internal
references expecting a user control, the internal references
expect an object.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1aisablock diagram of an existing system for hosting
managed composite controls;

FIG.1bis ablock diagram of a system for hosting managed
composite controls in accordance with aspects of the subject
matter disclosed herein;

FIG. 1c¢ is a block diagram of an existing runtime system
for hosting managed composite controls;

FIG. 1d is a block diagram of a runtime system for hosting
managed composite controls in accordance with aspects of
the subject matter disclosed herein;

FIG. 2a is a flow diagram of a known method for hosting a
managed composite control within a native application;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 25 is a flow diagram of an example of a method for
hosting a managed composite control within a native appli-
cation in accordance with aspects of the subject matter dis-
closed herein;

FIG. 3 is a block diagram illustrating an example of a
computing environment in which aspects of the subject mat-
ter disclosed herein may be implemented; and

FIG. 4 is a block diagram of an example of an integrated
development environment in accordance with aspects of the
subject matter disclosed herein.

DETAILED DESCRIPTION

Overview

A composite control is a user-defined control that is created
by combining existing controls. It can render a user interface
that synthesizes properties from the properties of its compo-
nent or child controls and can handle events raised by its child
controls. It can also expose custom properties and events. A
composite control is typically compiled and persisted as an
assembly or executable and thus is typically reusable. A man-
aged composite control executes under the management of a
virtual machine instead of being executed directly by the
computer’s CPU.

FIG. 1aq illustrates a traditional method of hosting a man-
aged composite control on a native application window. Tra-
ditionally, to place an unmanaged composite control on an
application window, a multi-level hosting mechanism is
employed. For example, a user might want to put a managed
composite (e.g., WPF) control on a custom task pane that is
implemented in a managed add-in for an Office application.
To do this, the Office application provides a native (unman-
aged) window (layer one 10, a first layer) for this purpose,
which can host only unmanaged controls. The VSTO runtime
then may provide an unmanaged ActiveX® control (layer two
20, a second layer) which can be placed in the native Office
window. The VSTO ActiveX® control, in turn, can host any
managed Windows Forms control (layer three 30, a third
layer), including instances of the ElementHost class (layer
four 40, a fourth layer), which in turn can host managed
composite (e.g., WPF) controls (layer five 50, a fifth layer).

Thus, a control hosting stack may look like this:

1. Office native window, hosts:

1.1. VSTO native ActiveX® control, which hosts:

1.1.1. Any arbitrary Windows Forms control, which hosts:

1.1.1.1. An instance of the .NET runtime ElementHost
Windows Forms control, which hosts:

1.1.1.1.1. Any arbitrary WPF control.

A runtime may provide several native ActiveX® hosting
controls (level 1.1 above): for hosting controls in the custom
task pane, in custom form regions, and on the surface of
applications including but not limited to Word and Excel
documents. For example, VSTO may provide a series of
ActiveX® host controls that can be placed in Office applica-
tions and can host ActiveX®. Thus VSTO can host WPF
using this multi-layered hosting approach because VSTO
supports Windows Forms and Windows Forms supports WPF
through ElementHost. However, in order for VSTO to support
WPF this way, it must use WindowsForms even if the user did
not use want to use Windows Forms.

In accordance with the subject matter disclosed herein, a
managed hosting control may be provided that can host man-
aged composite controls and is in turn directly hostable
within any unmanaged application. That is, for example, in
the example described above, the functions performed by an
arbitrary Windows Forms control and an instance of the NET
runtime ElementHost Windows Forms control, that hosts an

US 9,052,924 B2

3

arbitrary WPF control, can be combined by providing a man-
aged control which can host a managed composite control
such as but not limited to a WPF control, where the managed
hosting control is directly hostable within an unmanaged
hosting control.

FIG. 15 illustrates an example of hosting a managed com-
posite control (such as but not limited to a WPF control) on an
unmanaged application window. For example, a user might
want to put a WPF control on a custom task pane that is
implemented in a managed add-in (e.g., VSTO) for an appli-
cation (e.g., Office). To do this, the Office application pro-
vides a native (unmanaged) window (layer one 10, a first
layer) for this purpose, which can host only unmanaged con-
trols. A managed application (layer two 21, a second layer)
such as the VSTO runtime may then provide a (managed
code) light-weight hosting control (layer three 31, a third
layer) which can be placed in the native Office window. The
light-weight hosting control, in turn, can host any managed
composite (e.g., WPF) control (layer four 41, a fourth layer).
Thus, the control hosting stack for the example may look like
this:

1. Office native window, hosts:

1.1. VSTO managed application, which hosts:

1.1.1. light-weight managed code control, which hosts:

1.1.1.1. Any arbitrary managed composite (e.g., WPF)
control.

An adapter may be used to wrap managed composite con-
trol content and handle communications between layers.
Overloads may be created to accept the managed composite
control. For example, in order for VSTO to host a managed
composite control such as a WPF natively, even though WPF
does not support ActiveX®, an adapter (called VstoWpt-
Adapter) may wrap the WPF content before the content
moves into the unmanaged layer, and may also implement the
COM (Component Object Model) interfaces and translate the
COM calls. A new WPF forms region may be added as can a
new base class for the new WPF forms. The forms region
manager may recognize the WPF forms kind and wrap the
form region inside VstoWpfAdapter. Overloads may be cre-
ated to accept the WPF control. All internal references may
now expect an object instead of a user control. The WPF
content may be wrapped in a custom proxy and the WPF
control may be used as a container. Windows Forms and WPF
containers may thus be provided, and the interoperability
features of each may be employed to host WPF natively.

Windows Forms is the name given to a graphical user
interface application programming interface (API) included
as a part of Microsoft’s NET Framework. Windows Forms
provides access to the native Microsoft Windows interface
elements by wrapping the existing Windows API in managed
code. The Windows Presentation Foundation (or WPF), for-
merly code-named Avalon, is a more recent graphical sub-
system feature of the NET Framework. It provides a consis-
tent programming model for building applications and
provides a clear separation between Ul (user interface) and
business logic. WPF enables rich control, design, and devel-
opment of the visual aspects of Windows programs, unifying
ahost of application services including but not limited to user
interface, 2D and 3D drawing, fixed and adaptive documents,
advanced typography, vector graphics, raster graphics, ani-
mation, data binding, audio and video.

WPF and Windows Forms are different frameworks
intended for the development of Windows applications. WPF
lets developers do 3D and other rich media programming
through one consistent platform layer rather than assembling
the patchwork of technologies manually. WPF controls
greatly speed a developer’s ability to do rich media applica-

10

15

20

25

30

35

40

45

50

55

60

65

4

tions because of this single, consistent, comprehensive layer.
Both frameworks expose their programming models as man-
aged code, however, WPF and Windows Forms render con-
trols in completely different ways.

Firstly, WPF is able to control or directly interact with
GPUs (dedicated 3D hardware) whereas Windows Forms is
not. A GPU is a Graphics Processing Unit (also occasionally
called visual processing unit or VPU) and is a dedicated
graphics rendering device for a personal computer, worksta-
tion, or game console. Modern GPUs are very efficient at
manipulating and displaying computer graphics, and typi-
cally their highly parallel structure makes them more effec-
tive than general-purpose CPUss for a range of complex algo-
rithms. A GPU can sit on top of a video card, or it can be
integrated directly into the motherboard.

Secondly, WPF is DirectX-based, Windows Forms is GDI-
based. GDI stands for Graphics Device Interface, an interface
for representing graphical objects and transmitting them to
output devices such as monitors and printers. GDI is respon-
sible for tasks such as drawing lines and curves, rendering
fonts and handling palettes. It is not directly responsible for
drawing windows, menus, etc.

Thirdly, Windows Forms uses GDI and therefore are in
direct control of painting. Every control has a handle
(HWND) associated with it and therefore acts as a real win-
dow. Finally, WPF controls are handle-less and are rendered
to a DirectX drawing surface working in retained mode. This
implies that developers do not directly participate in the paint-
ing of the control but provides hints on what needs to be
painted.

The core of WPF is a resolution-independent and vector-
based rendering engine that is built to take advantage of
modern graphics hardware. WPF extends the core with a
comprehensive set of application-development features that
include Extensible Application Markup Language (XAML),
controls, data binding, layout, 2-D and 3-D graphics, anima-
tion, styles, templates, documents, media, text, and typogra-
phy. WPF is included in the Microsoft NET Framework, so
applications that incorporate other elements of the NET
Framework class library can be built.

WPF provides significantly enhanced capabilities over
previously-available programming models. The ability to use
WPF controls is needed not only in WPF applications but also
in non-WPF applications. Non-WPF application hosts can be
managed or unmanaged, including but not limited to
Microsoft Office applications such as Word and Excel.

WPF includes managed code and native code components;
but the public API exposed is only available via managed
code. The majority of WPF is in managed code. The compo-
sition engine which renders the WPF applications is a native
component called the Media Integration Layer (MIL). MIL
interfaces directly with DirectX and provides basic support
for 2D and 3D surfaces, timer-controlled manipulation of
contents of a surface with a view to exposing animation
constructs at a higher level, and compositing the individual
elements of a WPF application into a final 3D “scene” that
represents the Ul of the application and rendering it to the
screen. The media codecs are also implemented in unman-
aged code. In the managed world, PresentationCore provides
amanaged wrapper for MIL and implements the core services
for WPF, including a property system that is aware of the
dependencies between the setters and consumers of the prop-
erty, a message dispatching system by means of a Dispatcher
object to implement a specialized event system and services
which can implement a layout system such as measurement
for Ul elements. PresentationFramework implements the

US 9,052,924 B2

5

end-user presentational features, including layouts, time-de-
pendent, story-board based animations, and data binding.

WPF exposes a property system for WPF objects which
inherit from DependencyObject, that is aware of the depen-
dencies between the consumers of the property, and can trig-
ger actions based on changes in properties. Properties can be
either hard coded values or expressions, which are specific
expressions that evaluate to a result or can be inherited from
parent objects. WPF properties support change notifications,
which invoke bound behaviors whenever some property of
some element is changed. Custom behaviors can be used to
propagate a property change notification across a set of WPF
objects. This is used by the layout system to trigger a recal-
culation of the layout on property-changes, thus exposing a
declarative programming style for WPE, whereby almost
everything, from setting colors and positions to animating
elements can be achieved by setting properties. This allows
WPF applications to be written in XAML, which is a declara-
tive mark-up language, by binding the keywords and
attributes directly to WPF classes and properties.

The UI elements of an WPF application is maintained as a
class of Visual objects. Visual objects provide a managed
interface to a composition tree which is maintained by MIL.
Each element of WPF creates and adds one or more compo-
sition nodes to the tree. The composition nodes contain ren-
dering instructions, such as clipping and transformation
instructions, along with other visual attributes. Thus the entire
application is represented as a collection of composition
nodes, which are stored in a buffer in the system memory.
Periodically, MIL walks the tree and executes the rendering
instructions in each node, thus compositing each element on
to a DirectX surface, which is then rendered on-screen. MIL
uses the painter’s algorithm, where all the components are
rendered from back of the screen to the front, which allows
complex effects like transparencies to be easily achieved.

This rendering process is hardware accelerated using the
GPU. The composition tree is cached by MIL, creating a
retained mode graphics, so that any changes to the composi-
tion tree need only to be incrementally communicated to
MIL. Thus, an application does not have to manage the
repainting of the screen. Animations can be implemented as
time-triggered changes to the composition tree. On the user
visible side, animations are specified declaratively, by setting
some animation effect to some element via a property and
specifying the duration. The code-behind updates the specific
nodes of the tree, via Visual objects, to represent both the
intermediate states at specified time intervals as well as the
final state of the element. MIL renders changes to the element
automatically.

All WPF applications start with two threads: one for man-
aging the Ul and another background thread for handling
rendering and repainting. Rendering and repainting are man-
aged by WPF itself, without any developer intervention. The
Ul thread houses the Dispatcher (via an instance of Dispatch-
erObject), which maintains a queue of Ul operations that need
to be performed (as a tree of Visual objects), sorted by prior-
ity. UI events, including changing a property that affects the
layout, and user interaction events raised are queued up in the
dispatcher, which invokes the handlers for the events. Event
handlers may be used exclusively to update the properties to
reflect new content for application responsiveness while the
new content is generated or retrieved in a background thread.
The render thread picks up a copy of the visual tree and walks
the tree calculating which components will be visible and
renders them to Direct3D surfaces. The render thread also
caches the visual tree, so only changes to the tree need to be
communicated, which will result in updating only the

10

15

20

25

30

35

40

45

50

55

60

65

6

changed pixels. WPF supports an extensible layout model.
Layout is divided into two phases: Measure and Arrange. The
Measure phase recursively calls all elements and determines
the size they will take. In the Arrange phase, the child ele-
ments are recursively arranged by their parents, invoking the
layout algorithm of the layout module in use.

WPF provides interoperability with Win32, Microsoft’s
core set of application programming interfaces (APIs) avail-
able in the Microsoft Windows operating systems. Via host-
ing, WPF can be used inside existing Win32 code using the
HwndSource class. The HwndSource class is designed to
wrap WPF content, so that a WPF control can be used within
a HwndSource object and that object can be used within a
native Win32 application. The HwndSource class wraps WPF
content in a Win32 window, exposing a Handle property,
Hwnd.

Interoperability of WPF with Windows Forms is also pos-
sible through the use of the ElementHost and WindowsForm-
sHost classes. Windows Forms is the name given to the
graphical user interface API included as a part of Microsoft’s
NET Framework, providing access to the native Microsoft
Windows interface elements by wrapping the existing Win-
dows API in managed code. The ElementHost and Windows-
FormsHost classes are designed to host WPF controls within
Windows Forms controls. Windows Forms provides an
ActiveX® client in the Control class. The NET runtime
library (Microsoft® Visual Studio®, Visual Studio Tools for
Office) includes the HwndSource class and the ElementHost
class. Thus, because VSTO supports Windows Forms and
supports WPF through FlementHost, VSTO can host WPF
controls. However, doing so requires additional layers.
Light-Weight Managed Composite Control Hosting

FIG. 1c illustrates a block diagram of an existing runtime.
The runtime stack includes: an unmanaged application such
as Winword.exe 13 (a first layer) hosting a managed add-in
such as VSTO 22 (a second layer). The managed add-inn 22
in turn hosts a native window (a custom task pane 32, a third
layer) that hosts a Windows Forms Custom UserControl 42 (a
fourth layer) that hosts a Windows Forms Integration Element
Host 51 (a fifth layer) that hosts a WPF custom user Control
52 (a sixth layer) that hosts a WPF control 53 (a seventh
layer).

FIG. 14 illustrates a block diagram of a runtime in accor-
dance with aspects of the subject matter disclosed herein. The
system which when executing creates the runtime of FIG. 14
may be implemented at least in part on a computer such as the
one described below with respect to FIG. 3. The system may
be a part of or an add-in to the integrated development envi-
ronment described with respect to FIG. 4. The system may be
apartoforan add-into a suite of office programs. The runtime
stack may include: an unmanaged application 14 such as
Winword.exe (a first layer) hosting a managed add-in 23 such
as VSTO (asecondlayer). The managed add-in 23 in turn may
host a native window 33 (e.g., a custom task pane, a third
layer) that hosts a light-weight hosting control 43 (a fourth
layer) that hosts a managed composite control 55 (a fifth
layer, e.g., a WPF control). The unmanaged application may
be a windowing application such as Microsoft Windows or
may be a non-windowing application such as Java.

FIG. 2a illustrates a flow diagram of an existing method for
hosting managed composite controls, such as WPF controls,
in an unmanaged application. A native application such as an
Office application hosts a native control such as an ActiveX®
control at 202. The native (ActiveX®) control hosts any Win-
dows Forms control at 204. The Windows Forms control hosts
an instance of a .NET ElementHost forms control at 206. At
208 a NET ElementHost Forms control hosts a WPF control.

US 9,052,924 B2

7

FIG. 256 illustrates a flow diagram of an example of a
method for hosting managed composite controls, such as but
not limited to WPF controls, without intermediary hosting
layers in an unmanaged application in accordance with
aspects of the subject matter disclosed herein. At 205 a native
application such as but not limited to an Office application
hosts a native control such as an ActiveX® control. A native
(unmanaged control) such as a native ActiveX® control hosts
a hosting managed control such as a WPF adapter at 210 and
at 212 the hosting managed control (e.g., WPF adapter con-
trol) hosts the managed composite (e.g., WPF) control.

For example, to host a WPF control in Microsoft Office, a
VSTO runtime component may wrap the WPF control in a
WPF adapter class (called VstoWpfAdapter). An adapter may
“adapt” one interface for a class into one that a client expects.
An adapter typically allows classes to work together that
normally could not work together because of incompatible
interfaces, by wrapping its own interface around that of an
already existing class. An adapter may also be responsible for
handling any logic necessary to transform data into a form
that is useful for the consumer. For example, if multiple
Boolean values are stored as a single integer but a consumer
requires a “true”/“false”, the adapter may be responsible for
extracting the appropriate values from the integer value.
VstoWpfAdapter may implement the COM interfaces
expected by the native ActiveX® hosting control at 202. It
may also translate COM calls coming from the native
ActiveX® hosting control at 202 into WPF commands for the
WPF control at 212 as well as translating WPF commands
from the WPF control at 212 into COM calls for the ActiveX®
hosting control at 205. By means of Vsto AWpfAdapter, both
the native ActiveX® host control and the WPF control com-
municate in a transparent way. Additionally, the VSTO runt-
ime may expose new method overloads for developers so that
a developer can provide one or more WPF control to be
hosted.

Example of a Suitable Computing Environment

In order to provide context for various aspects of the sub-
ject matter disclosed herein, FIG. 3 and the following discus-
sion are intended to provide a brief general description of a
suitable computing environment 510 in which various
embodiments may be implemented. While the subject matter
disclosed herein is described in the general context of com-
puter-executable instructions, such as program modules,
executed by one or more computers or other computing
devices, those skilled in the art will recognize that portions of
the subject matter disclosed herein can also be implemented
in combination with other program modules and/or a combi-
nation of hardware and software. Generally, program mod-
ules include routines, programs, objects, components, data
structures, etc. that perform particular tasks or implement
particular data types. Typically, the functionality of the pro-
gram modules may be combined or distributed as desired in
various embodiments. The computing environment 510 is
only one example of a suitable operating environment and is
not intended to limit the scope of use or functionality of the
subject matter disclosed herein.

With reference to FIG. 3, a general purpose computing
device in the form of a computer 512 is described. Computer
512 may include a processing unit 514, a system memory 516,
and a system bus 518. The processing unit 514 can be any of
various available processors. Dual microprocessors and other
multiprocessor architectures also can be employed as the
processing unit 514. The system memory 516 may include
volatile memory 520 and nonvolatile memory 522. Nonvola-
tile memory 522 can include read only memory (ROM),
programmable ROM (PROM), electrically programmable

10

15

20

25

30

35

40

45

50

55

60

65

8

ROM (EPROM) or flash memory. Volatile memory 520 may
include random access memory (RAM) which may act as
external cache memory. The system bus 518 couples system
components including the system memory 516 to the process-
ing unit 514. The system bus 518 can be any of several types
including a memory bus, memory controller, peripheral bus,
external bus, or local bus and may use any variety of available
bus architectures.

Computer 512 typically includes a variety of computer
readable media such as volatile and nonvolatile media,
removable and non-removable media. Computer storage
media may be implemented in any method or technology for
storage of information such as computer readable instruc-
tions, data structures, program modules or other data. Com-
puter storage media includes, but is not limited to, RAM,
ROM, EEPROM, flash memory or other memory technology,
CDROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by computer 512.

It will be appreciated that FIG. 3 describes software that
can act as an intermediary between users and computer
resources. This software may include an operating system
528 which can be stored on disk storage 524, and which can
control and allocate resources of the computer system 512.
System applications 530 take advantage of the management
of resources by operating system 528 through program mod-
ules 532 and program data 534 stored either in system
memory 516 or on disk storage 524. [t will be appreciated that
computers can be implemented with various operating sys-
tems or combination s of operating systems.

A user can enter commands or information into the com-
puter 512 through an input device(s) 536. Input devices 536
include but are not limited to a pointing device such as a
mouse, trackball, stylus, touch pad, keyboard, microphone,
and the like. These and other input devices connect to the
processing unit 514 through the system bus 518 via interface
port(s) 538. An interface port(s) 538 may represent a serial
port, parallel port, universal serial bus (USB) and the like.
Output devices(s) 540 may use the same type of ports as do
the input devices. Output adapter 542 is provided to illustrate
that there are some output devices 540 like monitors, speakers
and printers that require special adapters. Output adapters 542
include but are not limited to video and sound cards that
provide a connection between the output device 540 and the
system bus 518. It should be noted that other devices and/or
systems or devices such as remote computer(s) 544 provide
both input and output capabilities.

Computer 512 can operate in a networked environment
using logical connections to one or more remote computers,
such as a remote computer(s) 544. The remote computer 544
can be a personal computer, a server, a router, a network PC,
a peer device or other common network node, and typically
includes many or all of the elements described above relative
to the computer 512, although only a memory storage device
546 has been illustrated in FIG. 5. Remote computer(s) 544
can be logically connected via communication connection
550. Network interface 548 encompasses communication
networks such as local area networks (LANs) and wide area
networks (WAN’) but may also include other networks. Com-
munication connection(s) 550 refers to the hardware/soft-
ware employed to connect the network interface 548 to the
bus 518. Connection 550 may be internal to or external to
computer 512 and include internal and external technologies
such as modems (telephone, cable, DSL and wireless) and
ISDN adapters, Ethernet cards and so on.

US 9,052,924 B2

9

It will be appreciated that the network connections shown
are examples only and other means of establishing a commu-
nications link between the computers may be used. One of
ordinary skill in the art can appreciate that a computer 512 or
other client device can be deployed as part of a computer
network. In this regard, the subject matter disclosed herein
man pertain to any computer system having any number of
memory or storage units, and any number of applications and
processes occurring across any number of storage units or
volumes. Aspects of the subject matter disclosed herein may
apply to an environment with server computers and client
computers deployed in a network environment, having
remote or local storage. Aspects of the subject matter dis-
closed herein may also apply to a standalone computing
device, having programming language functionality, inter-
pretation and execution capabilities.

FIG. 4 illustrates an integrated development environment
(IDE) 600 and Common Language Runtime Environment
602. An IDE 600 may allow a user (e.g., developer, program-
mer, designer, coder, etc.) to design, code, compile, test, run,
edit, debug or build a program, set of programs, web sites,
web applications, and web services in a computer system.
Software programs can include source code (component
610), created in one or more source code languages (e.g.,
Visual Basic, Visual J#, C++. C#, J#, Java Script, APL,
COBOL, Pascal, Eiffel, Haskell, ML, Oberon, Perl, Python,
Scheme, Smalltalk and the like). The IDE 600 may provide a
managed code development environment using the .NET
framework. An intermediate language component 650 may
be created from the source code component 610 and the
native code component 611 using a language specific source
compiler 620 and the native code component 611 (e.g.,
machine executable instructions) is created from the interme-
diate language component 650 using the intermediate lan-
guage compiler 660 (e.g. just-in-time (JIT) compiler), when
the application is executed. That is, when an IL application is
executed, it is compiled while being executed into the appro-
priate machine language for the platform it is being executed
on, thereby making code portable across several platforms.
Alternatively, in other embodiments, programs may be com-
piled to native code machine language (not shown) appropri-
ate for its intended platform.

A user can create and/or edit the source code component
according to known software programming techniques and
the specific logical and syntactical rules associated with a
particular source language via a user interface 640 and a
source code editor 651 in the IDE 600. Thereafter, the source
code component 610 can be compiled via a source compiler
620, whereby an intermediate language representation of the
program may be created, such as assembly 630. The assembly
630 may comprise the intermediate language component 650
and metadata 642. Application designs may be able to be
validated before deployment.

The various techniques described herein may be imple-
mented in connection with hardware or software or, where
appropriate, with a combination of both. Thus, the methods
and apparatus described herein, or certain aspects or portions
thereof, may take the form of program code (i.e., instructions)
embodied in tangible media, such as floppy diskettes, CD-
ROMs, hard drives, or any other machine-readable storage
medium, wherein, when the program code is loaded into and
executed by a machine, such as a computer, the machine
becomes an apparatus for practicing aspects of the subject
matter disclosed herein. In the case of program code execu-
tion on programmable computers, the computing device will
generally include a processor, a storage medium readable by
the processor (including volatile and non-volatile memory

10

15

20

25

30

35

40

45

50

55

60

65

10

and/or storage elements), at least one input device, and at least
one output device. One or more programs that may utilize the
creation and/or implementation of domain-specific program-
ming models aspects, e.g., through the use of a data process-
ing API or the like, may be implemented in a high level
procedural or object oriented programming language to com-
municate with a computer system. However, the program(s)
can be implemented in assembly or machine language, if
desired. In any case, the language may be a compiled or
interpreted language, and combined with hardware imple-
mentations.

While the subject matter disclosed herein has been
described in connection with the figures, it is to be understood
that modifications may be made to perform the same func-
tions in different ways.

What is claimed:

1. A device comprising:

a memory storing a system executed at least in part on a
computer that directly hosts a managed composite con-
trol within an unmanaged hosting application, the com-
puter including a processing unit, the managed compos-
ite control executing under the management of a virtual
machine instead of being executed directly by the pro-
cessing unit, the system comprising:

a managed application that supplies, in a single hosting
layer, a managed hosting control configured to
directly host the managed composite control and
transparently handle communication between the
managed composite control and the unmanaged host-
ing application, the managed hosting control directly
hostable within an unmanaged hosting control; and

the managed hosting control.

2. The system of claim 1, wherein the managed application
is an integrated development environment add-in.

3. The system of claim 1, wherein the managed application
is an add-in to a suite of office programs.

4. The system of claim 1, further comprising:

a native, unmanaged window, wherein the native, unman-

aged window is incapable of hosting managed controls.

5. The system of claim 1, wherein the managed application
is a windowing application.

6. The system of claim 4, wherein the managed application
provides an adapter that wraps the managed composite con-
trol, implements an interface and translates calls between
hosting layers.

7. A method, implemented with a computer having a pro-
cessing unit, of hosting a managed composite control on an
application window, the method comprising:

providing a native window, the native window capable of
hosting only unmanaged controls; and

providing, in a single hosting layer, a managed light-
weight hosting control directly hostable by the native
window, the managed light-weight hosting control
directly hosting the managed composite control and
transparently handling communication between the
managed composite control and the native window, the
managed composite control executing under the man-
agement of a virtual machine instead of being executed
directly by the processing unit.

8. The method of claim 7, wherein the managed composite
control is a Windows Presentation Foundation (WPF) con-
trol.

9. The method of claim 7, wherein the managed light-
weight hosting control is provided by a managed code add-in
to an unmanaged application.

US 9,052,924 B2

11

10. The method of claim 7, wherein an adapter wraps the
managed composite control content and manages an interface
between layers using a method overload.

11. The method of claim 7, wherein an adapter translates
calls between the unmanaged window and the managed com-
posite control.

12. A computer-readable storage medium storing com-
puter-executable instructions which when executed cause a
computing environment to:

provide an adapter, in a single hosting layer, the adapter

directly hosting a managed composite control, the
adapter directly hosted by an unmanaged hosting appli-
cation without intermediate hosting layers, the adapter
transparently handling communication between the
managed composite control and the unmanaged hosting
application, the managed composite control executing
under the management of a virtual machine instead of
being executed directly by a processing unit of the com-
puting environment.

13. The computer-readable storage medium of claim 12,
comprising further computer-executable instructions, which
when executed cause the computing environment to:

host the managed composite control.

14. The computer-readable storage medium of claim 12,
comprising further computer-executable instructions, which
when executed cause the computing environment to:

host a managed composite control comprising a Windows

Presentation Foundation (WPF) control.

10

15

20

25

12

15. The computer-readable storage medium of claim 12,
comprising further computer-executable instructions, which
when executed cause the computing environment to:

wrap the managed composite control content.

16. The computer-readable storage medium of claim 15,
comprising further computer-executable instructions, which
when executed cause the computing environment to:

manage communication between the layers to provide an

object instead of a user control.

17. The computer-readable storage medium of claim 15,
comprising further computer-executable instructions, which
when executed cause the computing environment to:

use the managed composite control as a container.

18. The computer-readable storage medium of claim 15,
comprising further computer-executable instructions, which
when executed cause the computing environment to:

create an overload to accept the managed composite con-

trol.

19. The computer-readable storage medium of claim 15
comprising further computer-executable instructions, which
when executed cause the computing environment to:

implement Component Object Model (COM) interfaces.

20. The computer-readable storage medium of claim 14,
comprising further computer-executable instructions, which
when executed cause the computing environment to:

translates Component Object Model (COM) calls.

#* #* #* #* #*

